Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Microbiol ; 73(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38506717

RESUMO

Purpose. Metagenomic next-generation sequencing (mNGS) has been widely used in the diagnosis of infectious diseases, while its performance in diagnosis of tuberculous meningitis (TBM) is incompletely characterized. The aim of this study was to assess the performance of mNGS in the diagnosis of TBM, and illustrate the sensitivity and specificity of different methods.Methods. We retrospectively recruited TBM patients between January 2021 and March 2023 to evaluate the performance of mNGS on cerebrospinal fluid (CSF) samples, in comparison with conventional microbiological testing, including culturing of Mycobacterium tuberculosis (MTB), acid-fast bacillus (AFB) stain, reverse transcription PCR and Xpert MTB/RIF.Results. Of the 40 enrolled, 34 participants were diagnosed with TBM, including 15(44.12 %) definite and 19(55.88 %) clinical diagnosis based upon clinical manifestations, CSF parameters, brain imaging, pathogen evidence and treatment response. The mNGS method identified sequences of Mycobacterium tuberculosis complex (MTBC) in 11 CSF samples. In patients with definite TBM, the sensitivity, specificity, positive predictive value, negative predictive value and accuracy of mNGS were 78.57, 100, 100, 66.67 and 85 %, respectively. Compared to conventional diagnostic methods, the sensitivity of mNGS (78.57 %) was higher than AFB (0 %), culturing (0 %), RT-PCR (60 %) and Xpert MTB/RIF (14.29 %).Conclusions. Our study indicates that mNGS of CSF exhibited an overall improved sensitivity over conventional diagnostic methods for TBM and can be considered a front-line CSF test.


Assuntos
Mycobacterium tuberculosis , Tuberculose Meníngea , Humanos , Tuberculose Meníngea/diagnóstico , Estudos Retrospectivos , Sequenciamento de Nucleotídeos em Larga Escala , Mycobacterium tuberculosis/genética , Encéfalo
2.
Bioresour Technol ; 398: 130530, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447619

RESUMO

Bio-photoelectrochemical cell (BPEC) is an emerging technology that can convert the solar energy into electricity or chemicals. However, traditional BPEC depending on abiotic electrodes is challenging for microbial/enzymatic catalysis because of the inefficient electron exchange. Here, electroactive bacteria (Shewanella loihica PV-4) were used to reduce graphene oxide (rGO) nanosheets and produce co-assembled rGO/Shewanella biohydrogel as a basic electrode. By adsorbing chlorophyll contained thylakoid membrane, this biohydrogel was fabricated as a photoanode that delivered maximum photocurrent 126 µA/cm3 under visible light. Impressively, the biohydrogel could be served as a cathode in BPEC by forming coculture system with genetically edited Clostridium ljungdahlii. Under illumination, the BPEC with above photoanode and cathode yielded âˆ¼ 5.4 mM butyrate from CO2 reduction, 169 % increase compared to dark process. This work provided a new strategy (nanotechnology combined with synthetic biology) to achieve efficient bioelectricity and valuable chemical production in PBEC.


Assuntos
Fontes de Energia Bioelétrica , Dióxido de Carbono , Grafite , Dióxido de Carbono/metabolismo , Butiratos , Hidrogéis , Eletricidade , Luz , Eletrodos
3.
Microbiol Spectr ; 12(1): e0224623, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38047697

RESUMO

IMPORTANCE: Tuberculous meningitis is a life-threatening infection with high mortality and disability rates. Current diagnostic methods using cerebrospinal fluid (CSF) samples have limited sensitivity and lack predictive biomarkers for evaluating prognosis. This study's findings reveal excessive activation of the immune response during tuberculous meningitis (TBM) infection. Notably, a strong negative correlation was observed between CSF levels of monokine induced by interferon-γ (MIG) and the CSF/blood glucose ratio in TBM patients. MIG also exhibited the highest area under the curve with high sensitivity and specificity. This study suggests that MIG may serve as a novel biomarker for differentiating TBM infection in CSF or serum, potentially leading to improved diagnostic accuracy and better patient outcomes.


Assuntos
Tuberculose Meníngea , Humanos , Tuberculose Meníngea/diagnóstico , Tuberculose Meníngea/tratamento farmacológico , Curva ROC , Interferon gama , Soro , Biomarcadores , Líquido Cefalorraquidiano
4.
Adv Mater ; 35(52): e2307141, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37929924

RESUMO

Stent implantation is a commonly used palliative treatment for alleviating stenosis in advanced esophageal cancer. However, tissue proliferation induced by stent implantation and continuous tumor growth can easily lead to restenosis. Therefore, functional stents are required to relieve stenosis while inhibiting tissue proliferation and tumor growth, thereby extending the patency. Currently, no ideal functional stents are available. Here, iodine-125 (125 I) nuclides are encapsulated into a nickel-titanium alloy (NiTi) tube to develop a novel temperature-memory spiral radionuclide stent (TSRS). It has the characteristics of temperature-memory, no cold regions at the end of the stent, and a uniform spatial dose distribution. Cell-viability experiments reveal that the TSRS can reduce the proliferation of fibroblasts and tumor cells. TSRS implantation is feasible and safe, has no significant systemic radiotoxicity, and can inhibit in-stent and edge stenosis caused by stent-induced tissue proliferation in healthy rabbits. Moreover, TSRS can improve malignant stenosis and luminal patency resulting from continuous tumor growth in a VX2 esophageal cancer model. As a functional stent, the TSRS combines the excellent properties of NiTi with brachytherapy of the 125 I nuclide and will make significant contributions to the treatment of malignant esophageal stenosis.


Assuntos
Neoplasias Esofágicas , Stents , Animais , Coelhos , Constrição Patológica , Temperatura , Neoplasias Esofágicas/radioterapia , Neoplasias Esofágicas/patologia , Radioisótopos
5.
Sci Rep ; 12(1): 8346, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585161

RESUMO

In present work, the abrasive-free jet polishing (AFJP) of bulk single-crystal KDP was first fulfilled, when using a newly-designed low-viscosity microemulsion as the AFJP fluid. The novel AFJP fluid shows a typical water-in-oil structure, in which the water cores uniformly distribute in the BmimPF6 IL, with a particle size of about 20-25 nm. What's more, the AFJP fluid is a controllable and selective non-abrasive jet fluid that the shape of the removal function is regular and smooth, presenting a similar Gaussian function, meanwhile, the dispersion coefficient of the removal rate is only 1.9%. Finally, the surface quality of the bulk single-crystal KDP is further improved by AFJP, meanwhile, the subsurface damage is first obviously mitigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...